Computer Vision
Object and People Tracking
Feature Tracking and Optical Flow

Prof. Didier Stricker
Kaiserlautern University
http://ags.cs.uni-kl.de/
DFKI – Deutsches Forschungszentrum für Künstliche Intelligenz
http://av.dfki.de
Outline of the lecture

Feature-tracking
- Extract visual features (corners, textured areas) and “track” them over multiple frames

Optical flow
- Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

→ Two problems, one registration method

Some examples

Video examples (external viewer)
Feature tracking

- Many problems, such as object tracking or structure from motion require tracking points

- If motion is small, tracking is an easy way to get them
Feature tracking

Challenges

- Figure out which features can be tracked
- Efficiently track across frames
- Some points may change appearance over time (e.g., due to rotation, moving into shadows, etc.)
- Drift: small errors can accumulate as appearance model is updated
- Points may appear or disappear: need to be able to add/delete tracked points
Three assumptions

- Brightness consistency
- Spatial coherence
- Temporal persistence
Brightness consistency

Image measurement (e.g. brightness) in a small region remain the same although their location may change.
Spatial coherence

- Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- Since they also project to nearby pixels in the image, we expect spatial coherence in image flow.
Temporal persistence

- The image motion of a surface patch changes gradually over time.
Feature tracking

Given two subsequent frames, estimate the point translation

- **Key assumptions of Kanade-Lucas Tracker (KLT)**
 - **Brightness constancy**: projection of the same point looks the same in every frame
 - **Temporal persistence ("small motions")**: points do not move very far
 - **Spatial coherence**: points move like their neighbors
The brightness constancy constraint

\[I(x, y, t) = I(x + u, y + v, t + 1) \]

- Take Taylor expansion of \(I(x + u, y + v, t + 1) \) at \((x, y, t)\) to linearize the right side:

\[
I(x + u, y + v, t + 1) \approx I(x, y, t) + I_x \cdot u + I_y \cdot v + I_t
\]

\[
I(x + u, y + v, t + 1) - I(x, y, t) = I_x \cdot u + I_y \cdot v + I_t
\]

Hence, \(I_x \cdot u + I_y \cdot v + I_t \approx 0 \to \nabla I \cdot [u \ v]^T + I_t = 0 \)
The brightness constancy constraint

- Can we use this equation to recover image motion \((u, v)\) at each pixel?
 \[
 \nabla I \cdot [u \ v]^T + I_t = 0
 \]

- How many equations and unknowns per pixel?
 - One equation (this is a scalar equation!), two unknowns \((u, v)\)
 - The component of the motion perpendicular to the gradient (i.e., parallel to the edge) cannot be measured
 - If \((u, v)\) satisfies the equation, so does \((u + u', v + v')\) if
 \[
 \nabla I \cdot [u' \ v']^T = 0
 \]
The aperture problem

Actual motion
The aperture problem

“In the absence of additional information the visual system prefers the slowest possible motion: i.e., motion orthogonal to the moving line”

http://en.wikipedia.org/wiki/Barberpole_illusion
How to get more equations for a pixel?

- Spatial coherence constraint
- Assume the pixel’s neighbors have the same \((u, v)\)
- If we use a 5x5 window, that gives us 25 equations per pixel

\[
0 = I_t(p_i) + \nabla I(p_i) \cdot [u \ v]
\]

\[
\begin{bmatrix}
I_x(p_1) & I_y(p_1) \\
I_x(p_2) & I_y(p_2) \\
\vdots & \vdots \\
I_x(p_{25}) & I_y(p_{25})
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1) \\
I_t(p_2) \\
\vdots \\
I_t(p_{25})
\end{bmatrix}
\]

How to get more equations for a pixel?

- Basic idea: impose additional constraints
- If we use a 5x5 window, that gives us 25*3 equations per pixel!

\[0 = I_t(p_i)[0,1,2] + \nabla I(p_i)[0,1,2] \cdot [u\ v] \]

\[
\begin{bmatrix}
I_x(p_1)[0] & I_y(p_1)[0] \\
I_x(p_1)[1] & I_y(p_1)[1] \\
I_x(p_1)[2] & I_y(p_1)[2] \\
\vdots & \vdots \\
I_x(p_{25})[0] & I_y(p_{25})[0] \\
I_x(p_{25})[1] & I_y(p_{25})[1] \\
I_x(p_{25})[2] & I_y(p_{25})[2] \\
\end{bmatrix}
\begin{bmatrix}
[u] \\
[v]
\end{bmatrix}
= -
\begin{bmatrix}
I_t(p_1)[0] \\
I_t(p_1)[1] \\
I_t(p_1)[2] \\
\vdots \\
I_t(p_{25})[0] \\
I_t(p_{25})[1] \\
I_t(p_{25})[2]
\end{bmatrix}
\]

\[A \quad 75x2 \quad d \quad 2x1 \quad b \quad 75x1 \]

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Lucas-Kanade flow

- Problem: we have more equations than unknowns
 \[A \ d = b \]
 \[
 \begin{align*}
 &25 \times 2 \quad 2 \times 1 \\
 &25 \times 1
 \end{align*}
 \]
 minimize \(\|Ad - b\|^2 \)

- Solution: solve least squares problem

- Recall: least squares solution:
 \[Ax = b \]
 \[
 \begin{align*}
 &\min((Ax - b)^T (Ax - b)) \\
 \text{Set derivative to zero:} & \quad 2A^T Ax - 2A^T b = 0 \\
 & \quad x = (A^T A)^{-1} A^T b
 \end{align*}
 \]
 Also called pseudo-inverse

Matlab operator:
 \[x = A\backslash b \]
Lucas-Kanade flow

- Problem: we have more equations than unknowns
 \[A \begin{bmatrix} d \end{bmatrix} = b \]
 with dimensions 25x2 2x1 25x1
 \[\longrightarrow \]
 minimize \(\|Ad - b\|^2 \)

- Solution: solve least squares problem
 - Minimum least squares solution given by solution (in \(d \)) of:
 \[\begin{bmatrix} A^T A \end{bmatrix} \begin{bmatrix} d \end{bmatrix} = A^T b \]
 \[\begin{bmatrix} 2 \times 2 \end{bmatrix} \begin{bmatrix} 2 \times 1 \end{bmatrix} \begin{bmatrix} 2 \times 1 \end{bmatrix} \]

\[\begin{bmatrix} \sum I_xI_x & \sum I_xI_y \\ \sum I_xI_y & \sum I_yI_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_xI_t \\ \sum I_yI_t \end{bmatrix} \]

\[A^T A \]
\[A^T b \]

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)
Conditions for solvability

- Optimal \((u, v)\) satisfies Lucas-Kanade equation:
 \[
 \begin{bmatrix}
 \sum I_x I_x & \sum I_x I_y \\
 \sum I_x I_y & \sum I_y I_y
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 = -
 \begin{bmatrix}
 \sum I_x I_t \\
 \sum I_y I_t
 \end{bmatrix}
 \]
 \[
 A^T A
 \]
 \[
 A^T b
 \]

- When is this solvable? I.e., what are good points to track?
 - \(A^T A\) should be invertible
 - \(A^T A\) should not be too small due to noise
 - eigenvalues \(\lambda_1\) and \(\lambda_2\) of \(A^T A\) should not be too small
 - \(A^T A\) should be well-conditioned
 - \(\lambda_1 / \lambda_2\) should not be too large (\(\lambda_1 = \text{larger eigenvalue}\))

- Does this remind you of anything?
 - \(\rightarrow\) Criteria for corner detector (see also: Harris)
Edge

\[\sum \nabla I (\nabla I)^T \]

- large gradients, all the same
- large \(\lambda_1 \), small \(\lambda_2 \)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Low texture region

\[\sum \nabla I (\nabla I)^T \]

- gradients have small magnitude
- small \(\lambda_1 \), small \(\lambda_2 \)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
High textured region

\[\sum \nabla I (\nabla I)^T \]
- gradients are different, large magnitudes
- large \(\lambda_1 \), large \(\lambda_2 \)

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track and which are hard
 - Very useful later on when we do feature tracking...

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
The aperture problem resolved
The aperture problem resolved
Errors in Lucas-Kanade

- What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible
 - Suppose there is not much noise in the image

- When our assumptions are violated
 - Brightness constancy is not satisfied
 - The motion is not small
 - A point does not move like its neighbors
 - Window size is too large
 - What is the ideal window size?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it’s much larger than one pixel (2^{nd} order terms dominate)
 - How might we solve this problem?
Reduce the resolution!
Coarse-to-fine optical flow estimation

Gaussian pyramid of image I_{t-1}

- $u=10$ pixels
- $u=5$ pixels
- $u=2.5$ pixels
- $u=1.25$ pixels

Gaussian pyramid of image I_t

- $u=1.25$ pixels
- $u=2.5$ pixels
- $u=5$ pixels
- $u=10$ pixels
Dealing with larger movements: coarse-to-fine registration

Gaussian pyramid of image I_t

run iterative L-K

upsample

run iterative L-K

Gaussian pyramid of image I_{t+1}
Dealing with larger movements: Iterative refinement

1. Initialize \((x', y') = (x, y)\)
2. Compute \((u, v)\) by
 \[
 \begin{bmatrix}
 \sum I_x I_x & \sum I_x I_y \\
 \sum I_x I_y & \sum I_y I_y
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 = -
 \begin{bmatrix}
 \sum I_x I_t \\
 \sum I_y I_t
 \end{bmatrix}
 \]
 2nd moment matrix for feature patch in first image
3. Shift window by \((u, v)\): \(x' := x' + u; y' := y' + v\);
4. Recalculate \(I_t\)
5. Repeat steps 2-4 until small change
 - Use interpolation for subpixel values

Original \((x, y)\) position
\[
I_t = I(x', y', t + 1) - I(x, y, t)
\]
Shi-Tomasi feature tracker

- Find good features using eigenvalues of second-moment matrix (e.g., Harris detector or threshold on the smallest eigenvalue)
 - Key idea: “good” features to track are the ones whose motion can be estimated reliably

- Track from frame to frame with Lucas-Kanade
 - This amounts to assuming a translation model for frame-to-frame feature movement

- Check consistency of tracks by affine registration to the first observed instance of the feature
 - Affine model is more accurate for larger displacements
 - Comparing to the first frame helps to minimize drift

Tracking example

Figure 1: Three frame details from Woody Allen’s *Manhattan*. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

Figure 2: The traffic sign windows from frames 1, 6, 11, 16, 21 as tracked (top), and warped by the computed deformation matrices (bottom).

Summary of KLT tracking

- Find a good point to track (harris corner)
- Use intensity second moment matrix and difference across frames to find displacement
- Iterate and use coarse-to-fine search to deal with larger movements
- When creating long tracks, check appearance of registered patch against appearance of initial patch to find points that have drifted
Implementation issues

Window size

- Small window more sensitive to noise and may miss larger motions (without pyramid)
- Large window more likely to cross an occlusion boundary (and it’s slower)
- Size of 15x15 to 31x31 seems typical

Weighting the window

- Common to apply weights so that center matters more (e.g., with Gaussian)
Tracking over many frames

- Select features in first frame

- For each frame:
 - Update positions of tracked features
 - Discrete search (e.g. cross-correlation) or Lucas-Kanade (or a combination of the two)
 - Terminate inconsistent tracks
 - Compute similarity with corresponding feature in the previous frame or in the first frame where it’s visible
 - Find more features to track
Optical flow

Vector field function of the spatio-temporal image brightness variations

Picture courtesy of Selim Temizer – Learning and Intelligent Systems (LIS) Group, MIT
Uses of motion

- Estimating 3D structure
- Segmenting objects based on motion cues
- Learning and tracking dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)
Motion field

- The **motion field** is the projection of the 3D scene motion into the image.
Definition: optical flow is the *apparent* motion of brightness patterns in the image.

Ideally, optical flow would be the same as the motion field.

Have to be careful: apparent motion can be caused by lighting changes without any actual motion.

- Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination.
Lucas-Kanade Optical Flow

- Same as Lucas-Kanade feature tracking, but for each pixel
 - As we saw, works better for textured pixels

- Operations can be done one frame at a time, rather than pixel by pixel
 - Efficient
Iterative Refinement

- **Iterative Lucas-Kanade Algorithm**
 1. Estimate displacement at each pixel by solving Lucas-Kanade equations
 2. Warp $I(t)$ towards $I(t+1)$ using the estimated flow field
 - Basically, just interpolation
 3. Repeat until convergence

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Coarse-to-fine optical flow estimation

Gaussian pyramid of image I_t

run iterative L-K

warp & upsample

...

run iterative L-K

Gaussian pyramid of image I_{t+1}
Example
Multi-resolution registration

* From Khurram Hassan-Shafique
CAP5415 Computer Vision 2003
Optical Flow Results

Lucas-Kanade without pyramids
Fails in areas of large motion

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Optical Flow Results

Lucas-Kanade with Pyramids

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
Summary

- Major contributions from Kanade, Lucas, Tomasi
- We refer to it as “KLT-Tracker”
 - Tracking feature points
 - Optical flow
 - Stereo
 - Structure from motion

- Key ideas
 - By assuming brightness constancy, truncated Taylor expansion leads to simple and fast patch matching across frames
 - Coarse-to-fine registration
Thank you!