Background Subtraction

Prof. Didier Stricker
Doz. Gabriele Bleser

Computer Vision: Object and People Tracking
Outline

• Introduction and Examples
• Background Subtraction Concept
 • Background Subtraction Principle
 • Model Initialization
 • Threshold Selection
 • Post-Processing
• Background Subtraction Methods
 • Frame Differencing
 • Single Gaussian Model
 • Gaussian Mixture Model
 • Color and Pixel Based Background Subtraction
 • Patch-Based Background Subtraction
Background Subtraction

- **Goal:** Separation of **Foreground** (object) and **Background** (everything else = noise)
- **Result** (foreground mask) could be a
 - Binary image, representing the foreground
 - Probability image, containing the likelihood of each pixel being foreground
- **Useful for**
 - Further processing, such as using silhouettes, etc.
 - Less processing, less room for errors
Background Subtraction

Simple techniques can do ok with static camera
…but hard to do perfectly

Widely used:

- Traffic monitoring (counting vehicles, detecting & tracking vehicles, pedestrians)
- Human action recognition (running, walking, jumping, squatting)
- Human-computer interaction
- Object segmentation
- Object detection and tracking
Background Subtraction Example
Why is it Hard?

1. Illumination changes
 - Gradual (evening to night)
 - Sudden (overhead clouds)

2. Changes in the background geometry
 - Parked cars (should become part of the background)

3. Camera related issues
 - Camera oscillations (shaking)
 - Grainy noise
 - Motion blur

4. Changes in background objects
 - Tree branches
 - Sea waves

5. Cast lights and shadows
 - Lights and shadows cast by foreground objects
Background Subtraction

A largely unsolved problem...

One video frame Estimated background Difference Image Thresholded Foreground on blue
Blue/Green Screen
Blue/Green Screen

- Background is modeled as a range of blue/green colors in an appropriate color space, e.g. HSL

Advantages
- Works very accurately
- Camera may move

Disadvantages
- Restricted applicability (controlled environment required)
- Foreground objects may not contain the background color
An example: The Ultimatte System
The Ultimatte System

• Underlying method: color differencing
• Difference of blue channel to red or green channel: \(\alpha = B - \max(G, R) \)

• The system additionally uses various patented improvements to this basic approach
Background Subtraction

Typical assumptions
• Static background
• Foreground objects move
• Static cameras

Standard approach
• Build a **model** of the background
• Create a foreground **mask** by deciding for each pixel for foreground or background based on the **distance** between the current pixel value in the frame and background model
• **Update** the background model

Main components of BS algorithms
• Background **model**, **distance** metric, **mask** generation method and model **update** procedure
Background Subtraction Base Algorithm

1. Initialize Model

2. Repeat for each frame:
 1. Compute distance between background model and current frame
 2. Compute foreground mask based on distance metric
 3. Update the model using the current frame
Example: Frame Differencing

• Naive approach for static backgrounds

Main components

• **Model**: RGB values of each pixel
• Distance **metric**: sum of absolute differences of RGB values per pixel
• **Mask** generation: binary mask, where a pixel is foreground iff absolute difference is above a threshold
• **Model update**: replace model with current frame

Disadvantages

• Pixel noise
• Only object outlines may appear in the mask (depending on frame-rate and object self-similarities)
• Manual threshold selection
Overview of Different BS Methods

Background subtraction methods vary in …

• … what is modeled:
 - Per-pixel: *color* or *color and gradient*
 - Per-pixel patch: *texture*

• … how it is modeled:
 - Parametric models: e.g. Gaussian models
 - Non-parametric models: e.g. Kernel density estimation

• … how the mask is generated:
 - Binary masks can be obtained by thresholding the distance
 - Probability masks can be obtained either
 » from the distance function directly if it yields probabilities or
 » by mapping the value range of the distance function into a probability range with an appropriate mapping function
Single Gaussian Model

Main components

- **Model**: mean color value (e.g. RGB) μ and variance σ^2
- **Distance metric**: probability of pixel's RGB values x to belong to the model:

 $p(x) = \frac{1}{(2\pi)^{\frac{3}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$, where $\Sigma = \sigma^2 I$

- **Model update**
 - Mean: $\mu_{t+1} = \alpha \cdot x + (1 - \alpha) \mu_t$
 - Variance: $\sigma^2_{t+1} = \alpha \cdot (x - \mu_{t+1})^2 + (1 - \alpha) \cdot \sigma_t^2$ (per channel)
 - With suitable learning rate α

Exponential decay $1 - \alpha = 0.9$
Single Gaussian Model: Pros and Cons

Advantages

• Easy to implement and use
• Very fast method
• Background model can change over time, e.g. due to gradual illumination changes

Disadvantages

• Cannot handle non-static (= dynamic) backgrounds
• Pixel noise
• Manual, global threshold for mask generation is not optimal
Single Gaussian Model: Threshold

Threshold should be different for each pixel
Local Adaptive Thresholds

- **Threshold** θ can be chosen based on the **standard deviation** σ of a pixel’s value over time \rightarrow a local threshold
- Sample mean
 \[\mu = \frac{1}{N} \sum_{i=1}^{N} x_i \]
- Sample variance σ^2
 \[\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \]
- For example:
 - If $\theta_{\text{min}} < d < \theta_{\text{max}} \rightarrow$ background pixel
 - $\theta_{\text{min}} = \mu - K \cdot \sigma$
 - $\theta_{\text{max}} = \mu + K \cdot \sigma$
 - K is set by you! (usually $K = 2$)

<table>
<thead>
<tr>
<th>Range</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>68.26 %</td>
</tr>
<tr>
<td>2σ</td>
<td>95.44 %</td>
</tr>
<tr>
<td>3σ</td>
<td>99.73 %</td>
</tr>
<tr>
<td>4σ</td>
<td>99.99 %</td>
</tr>
</tbody>
</table>
Model Initialization

• Often foreground objects are present continuously
• But the background model needs to be initialized
• \(\rightarrow\) Accumulate background data over multiple frames, e.g. through
 • Mean filtering
 • Median filtering
Mean Filtering

- Each background pixel is the mean of N frames

Mean of 15 frames
Median Filtering

- Each background pixel is the median of N frames

Median of 15 frames
Recall: Median Filtering

- A **median filter** operates over a window by selecting the median intensity in the window.

1D median filtering

- **input**

 | 10 | 52 | 20 | 23 | 90 | 27 | 33 | 31 | 30 |

- **sort**

 | 10 | 20 | 23 | 27 | 30 | 31 | 33 | 52 | 90 |

- **output**

2D median filtering

- serialize input and apply 1D median filter, e.g. 3x3 filter:

 | 10 | 52 | 20 |
 | 23 | 90 | 27 |
 | 33 | 31 | 30 |

 | 10 | 52 | 20 | 23 | 90 | 27 | 33 | 31 | 30 |
Median Image

1D median filtering along the temporal axis

Background Model
Post Processing

Pixel noise can be reduced by post processing

- 2D median filtering
- Morphological filtering
- Depending on filter size, bigger spots can be erased

Median filtering used to remove noise
Morphological Filtering

Basic operations: *erosion* and *dilation*
- Based on **structuring element** (SE)
- Structuring element describes neighborhood relation for a pixel (shown in red)
- The value of the filtered pixel is defined as the minimum (erosion) or maximum (dilation) value of all the pixels in the neighborhood

Dilation example:

original image:

![original image]

dilated image:

![dilated image]
Morphological Filtering

Opening: *erosion* followed by *dilation*

- Foreground structures smaller than the structuring element will be removed

![Morphological Opening Diagram](image)
Morphological Filtering

Closing: \textit{dilation} followed by \textit{erosion}

- Holes in the foreground smaller than the structuring element will be filled

![Morphological Closing Diagram]
Gaussian Mixture Model (GMM)

- Extension of the single Gaussian model
- Goal: handling of non-static backgrounds

Model: K clusters \((j=1..K)\) per pixel with

- **Mean** color value (e.g. RGB) \(\mu_j\)
- Per color-channel **variance** \(\sigma_j^2 = (\sigma_{R_j}^2, \sigma_{G_j}^2, \sigma_{B_j}^2)^T\)
- Mixture **weight** \(w_j\)

Distance metric

- Probability of pixel’s RGB values \(x = (R, G, B)^T\) to belong to the background model:

\[
p(x) = \sum_{j=1}^{K} w_j \frac{1}{(2\pi)^{3/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right) \text{ where } \Sigma = \sigma^2 I
\]

\[
p(x) = \sum_{j=1}^{K} w_j \cdot g_j(x; \mu_j, \sigma_j^2)
\]
Gaussian Mixture Model (GMM)

Model update

- Compute matching quality \(p \) for each cluster \(j \):
 \[p_j = w_j \cdot g_j(x; \mu_j, \sigma_j) \]
 where \(g \) is the Gaussian function

- Find for each pixel \(x \) the best matching cluster \(j \) and update:
 - Mean: \(\mu_{j,t+1} = \alpha \cdot x + (1 - \alpha) \mu_{j,t} \)
 - Covariance: \(\Sigma_{j,t+1} = \alpha \cdot ((x - \mu_{j,t+1})(x - \mu_{j,t+1})^T) + (1 - \alpha)\Sigma_{j,t} \)
 - Weight: \(w_{j,t+1} = (1 - \alpha)w_{j,t} + \alpha \)

- For all other clusters of the pixel reduce their weight:
 - \(w_{j,t+1} = (1 - \alpha)w_{j,t} \)

- Learning rate \(\alpha \): \(0 \leq \alpha \leq 1 \)
 - Has to be tuned to match the speed of gradual changes in the background, e.g. due to lighting, in your application
Gaussian Mixture Model (GMM)

Advantages

• Can handle dynamic background

Disadvantages

• Pixel noise → apply morphological filtering
• Pixels are considered independently (the context is ignored)
• Spotlights and shadows cast by foreground objects will appear as foreground

Reading

Pixel and Gradient Based Approach

Model: K clusters per pixel \((i, j)\) with

- Mean *color value*, variance and mixture weight as in the standard GMM
- Additionally considers the *gradient* \(\Delta\) in terms of magnitude \(\Delta_m\) and direction \(\Delta_d\) computed on the grayscale values of neighboring pixels in x and y direction
- Gradient is not stored explicitly but can be derived from the probability distribution of the color values

Model update

- Probability distribution of the color values are updated as in the GMM
- Gradient distribution does not need to be updated explicitly
Pixel and Gradient Based Approach

Distance metric

- Based on two probability distributions
 - Probability p_c of pixel’s RGB values $x = (R, G, B)^T$ to belong to the background model (same as in GMM)
 - Probability p_g of pixel’s gradient (M,D) to belong to the background model
 - Complex function
 - But all parameters can be derived from p_c of involved pixels
 - Masks are generated by thresholding on the probability values p_c and p_g
Pixel and Gradient Based Approach

Advantages

- Can handle gradual and sudden (local) illumination changes
- Can detect ghost, e.g. if a background object is moved (the objects original location will not be detected as foreground)

Disadvantages

- Appearance of background defined on pixel level → no texture information considered

Fusion of masks on region level

- Border pixels of a foreground blob in the pixel mask are verified with gradient mask
- Blob is then either confirmed as foreground or dismissed as ghost, e.g. caused by a light spot or a moved background object
Patch-Based Approach

Model

- Overlapping image patches of fixed size (8x8)
- Patch descriptor vector d: 4 lowest frequencies of a 2D DCT of each color channel (RGB)

Distance Metrics

- Composed of 3 individual metrics:
 - Gaussian model of patch descriptor distribution (μ, σ^2)
 - Illumination robust metric: cosine distance metric
 \[
 \text{cosdist}(d, \mu) = 1 - \frac{d \cdot \mu}{\|d\| \|\mu\|}
 \]
 - Temporal correlation check: $\text{cosdist}(d^t, d^{t-1})$ if patch was classified as background in previous frame
- Final metric: multi-stage binary classification
 - Check of thresholds on those 3 metrics:
 - If one votes for background, the patch is considered background
 - If all vote for foreground, the patch is considered foreground
Patch-Based Approach

Probabilistic **Mask Generation** for each pixel x:
- Foreground probability p: number of foreground patches containing pixel x divided by no. of all patches containing x

Model Update
- Standard update with learning rate α
- Performed only if Gaussian model votes for background
- Slow motion and gradual illumination changes are learned into the background model

Advantages
- Considers pixel context, robust to dynamic background, gradual and sudden illumination changes, no pixel noise

Disadvantages
- Prone to over-smoothing of blob contours
- Cannot distinguish gray values due to use of illumination robust metric
Patch-Based Approach

Reading

- Vikkas Reddy, Conrad Sanderson, Andreas Sanin, Brian C. Lovell. „Adaptive Patch-Based Background Modelling for Improved Foreground Object Segmentation and Tracking“
Applications: Blob Extraction and Tracking
Blob Extraction

Blob = connected component

- Maximal subset of pixels which are all connected to each other
- **Neighborhood** relation, e.g. 4-connectivity or 8-connectivity
 - Two pixels \(x, y \) are **connected** if
 - \(x \) and \(y \) are *neighbors* and have the same value or
 - if there is a pixel \(z \), where \(x \) and \(z \) are *neighbors* and have the same value and \(z \) and \(y \) are connected

Connected component analysis

- Task: label each component, i.e. all connected pixels, with the same label

Challenge

- Efficient implementation
Multi-Target Blob Tracking

Task

• Identity assignment of blobs from different frames containing the same object

Solution

• Assign identity of blob from previous frame which is most similar to the current blob and is above a minimal threshold

How to describe the similarity of blobs?

• Blob location (center)
• Blob size (area)
• Blob shape (e.g. convexity)
• Similarity of the contained object, e.g. color histograms
Color Histogram

Naive approach

- Binning per color channel into equidistant bins of width w
- Concatenation of color channel bins
- Normalization of the combined histogram
- Problems:
 - Color noise in dark areas
 - Limited descriptiveness
 (color channels are considered independently)

\[N = 3 \cdot \left(\frac{256}{w} \right) \]
Color Histogram

Clever approach

- Binning directly in the 3D color space \rightarrow 3D bins
- Avoids problems due to color noise in dark areas
- Preserves interdependence of color channel values
- Disadvantage: more bins for same binning width w

Distance metric

- Use e.g. histogram correlation or histogram intersection

$$N = \left(\frac{256}{w}\right)^3$$

Reading

- M. Swain, D. Ballard. “Color Indexing”
Outlook and Further Reading

• Non-standard BS approaches
 • Fatih Porikli. “Multiplicative background-foreground estimation under uncontrolled illumination using intrinsic images.”

• BS approaches with relaxed requirements
 • Y. Sheikh, O. Javed, T. Kanade. “Background Subtraction for Freely Moving Cameras”

• On-the-fly online background model learning
 • Dar-Shyang Lee. “Effective Gaussian Mixture Learning for Video Background Subtraction”

• Non-parametric models
 • A. Elgammal, D. Harwood, and L. Davis. “Non-parametric model for background subtraction”
Thank you!