Introduction to Bayesian tracking

Doz. G. Bleser
Prof. Stricker

Computer Vision: Object and People Tracking
• Goal:
 – Estimate **posterior belief** or **state distribution** based on **control data** and **sensor measurements**
 – Information represented as **probability density function**
• State: position of robot in corridor
• Control data: odometry
• Measurements: door sensors
Recursive Bayesian filtering

• **Key idea 1**: Probability distributions represent our belief about the state of the dynamical system

• **Key idea 2**: Recursive cycle
 1. Predict from motion model
 2. Sensor measurement
 3. Correct the prediction
 ...repeat
Outline

• Reminder: Basic concepts in probability
• Terminology, notation, probabilistic laws
• Bayes filters
Joint and Conditional Probability

- Let X and Y denote two random variables:

$$p(x, y) = p(x|y)p(y)$$

- If X and Y are independent (carry no information about each other) then:

$$p(x, y) = p(x)p(y)$$

$$p(x|y) = p(x)$$
Joint and Conditional Probability: example

• Ideal cube, dice toss: \(G\)={2, 4, 6}, \(A\)={4, 5, 6}

• \(p(G) = ?\)

• \(p(A) = ?\)

• \(p(G, A) = ?\)

• \(p(G|A) = ?\)
Joint and Conditional Probability: example

• Ideal cube, dice toss: \(G = \{2, 4, 6\} \), \(A = \{4, 5, 6\} \)

• \(p(G) = \frac{1}{2} \)

• \(p(A) = \frac{1}{2} \)

• \(p(G, A) = p(\{4, 6\}) = \frac{1}{3} \)

• \(p(G | A) = \frac{p(G, A)}{p(A)} = 2 \cdot p(\{4, 6\}) = \frac{2}{3} \)
Theorem of Total Probability, Marginals

Discrete case

\[\sum_x p(x) = 1 \]

\[p(x) = \sum_y p(x, y) \]

\[p(x) = \sum_y p(x|y)p(y) \]

Continuous case

\[\int_{-\infty}^{\infty} p(x) = 1 \]

\[p(x) = \int p(x, y) dy \]

\[p(x) = \int p(x|y)p(y) dy \]
Bayes Theorem

- In the context of state estimation:
 - Assume \(x \) is a quantity that we want to infer from \(y \)
 - Think of \(x \) as state and \(y \) as sensor measurement

Generative model: how state variables cause sensor measurements

\[
p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}
\]

- Posterior probability
- Independent of \(x \)
- \(\eta \) denoted as normalizer

Important: in this lecture, we will freely use \(\eta \) in different equations to denote normalizers, even if their actual values differ!
Conditional Independence

• All rules presented so far can be conditioned on an arbitrary random variable, e.g. Z

$$p(x|y, z) = \frac{p(y|x, z)p(x|z)}{p(y|z)}$$

$$p(x, y|z) = p(x|y, z)p(y|z)$$

• Conditional Independence: x and y are independent, given that z is known

$$p(x, y|z) = p(x|z)p(y|z)$$

$$\Leftrightarrow p(x|z) = p(x|z, y), p(y|z) = p(y|z, x)$$

⇒ does not necessarily imply absolute independence

y carries no information about x, if z is known
Towards the state estimation problem: terminology, notation, probabilistic laws
Terminology: overview

- **State**
 - [Image of a person with a red square indicating a state]

- **Measurement model/likelihood**
 - [Image of a person with a gradient indicating measurement]

- **Motion model/transition probability**
 - [Diagram showing motion transitions with arrows]

- **Inference**
 - [Diagram showing inference process with dots and arrows]
State

- The environment or world is considered a dynamical system.
- The state contains all information that we want to know about the system.
- Notation: x_t denotes the state at time t.
- A state is called complete, if it is the best predictor for the future knowledge of past states, measurements, or controls carries no information about evolution of the state in the future.

Typical examples of states:
- Object pose/velocity in global coordinate system \(\rightarrow\) continuous, dynamic
- 3D positions of landmarks \(\rightarrow\) continuous, stationary
- Whether a sensor is broken or not \(\rightarrow\) discrete, dynamic
- Sensor biases \(\rightarrow\) discrete, stationary.

Markov chain
State: examples

- Example for people tracking in 2D images

\[x_t = x \]
\[x_t = (x, y) \]
\[x_t = (x, y, h) \]
\[x_t = \{x_t^1, x_t^2\} \]
State: example

- Object defined by a point in an image
 - position
 - velocity
 - acceleration

\[
\mathbf{x}_t = (x, y) \\
\mathbf{x}_t = (x, y, \dot{x}, \dot{y}) \\
\mathbf{x}_t = (x, y, \ddot{x}, \ddot{y})
\]

State: examples

- Camera/object pose (rotation, translation)
- Joint angles
Measurements

• **Sensor measurements** provide noisy (indirect) information about the state of the dynamical system under consideration

• Notation:
 – z_t denotes a measurement at time t
 – $z_{t_1:t_2}$ denotes the set of all measurements acquired from time t_1 to t_2

• Typical examples of sensor measurements:
 – Camera images (pixel-/feature-/object-level)
 – Inertial measurements
 – GPS coordinates
Control inputs

- **Control inputs** carry noisy information about the change of the dynamic system under consideration

- Notation:
 - u_t denotes control data at time t
 - u_t corresponds to the change of the state in time interval $(t - 1; t]$
 - $u_{t_1:t_2} = u_{t_1}, u_{t_1+1}, ..., u_{t_2}$ denotes sequences of control data

- Typical examples of control inputs:
 - Velocity: setting the velocity of a robot to 10 cm/s for the duration of 5 seconds suggests that the robot is 50 cm ahead of its pose before
 - Odometry: odometers measure the revolution of wheels
 - **No input** (often the case in visual tracking)
State estimation example

- **Dynamical system:** tracking of billiard balls by means of a camera looking from above (without spin, collision, etc.)
- **Pre-requisite:** camera pose known with respect to table

Courtesy of U. Frese
State estimation example

- **Dynamical system**: tracking of billiard balls by means of a camera looking from above (without spin, collision, etc.)
- **Pre-requisite**: camera pose known with respect to table
- Which components are contained in:
 - State x_t
 - Measurement z_t
 - Control input u_t
State estimation example

- **Dynamical system**: tracking of billiard balls by means of a camera looking from above (without spin, collision, etc.)
- **Pre-requisite**: camera pose known with respect to table
- **Which components are contained in (simple model):**
 - State $x_t = (p_x, p_y, \dot{p}_x, \dot{p}_y) [\text{m}]$
 - position and velocity in reference frame of billiard table
 - Measurement $z_t = (i_x, i_y) [\text{Pixel}]$
 - pixel position of ball in camera image
 - Control input $u_t = ()$
 - empty, however, we can assume constant velocity during a time interval
- **Question**: how could the Markov assumption be violated here?
 - E.g. badly calibrated camera
 - Interaction with other balls or table (collisions)
 - Physical aspects: spin, friction, ...
Probabilistic generative laws

- The evolution of state and measurements is governed by probabilistic laws.
- State x_t is generated stochastically from state x_{t-1}:

$$p(x_t|x_{0:t-1}, z_{1:t-1}, u_{1:t})$$

- Assuming that the state is complete:

$$p(x_t|x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t|x_{t-1}, u_t)$$

Markov assumption: example of conditional independence.
Probabilistic generative laws

• Measurement z_t is generated stochastically from state x_t:

$$p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t})$$

• Assuming that the state is complete:

$$p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$$

Another Markov assumption (conditional independence)
Introductory example

Odometry input u_1: 1m forward.

Measurement z_2: here is a door.
Probabilistic generative laws

- **State transition probability**
 - Specifies how the state evolves over time as a function of the previous state and the current control data

- **Measurement probability/likelihood**
 - Specifies how measurements are generated as function of the state
 - Measurements can be understood as noisy projections of the state

Dynamic Bayesian network/
Hidden Markov model
Belief

- In **Bayesian inference**, we usually want to estimate the state x_t given sequences of measurements $z_{1:t}$ and control data $u_{1:t}$ and the respective state transition $p(x_t|x_{t-1}, u_t)$ and measurement probabilities $p(z_t|x_t)$.
- Our estimate of the true state x_t is also called **belief**:

$$bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$$

Measurement update/correction: calculation of posterior from predicted state

Posterior distribution of x_t conditioned on all available data

\Rightarrow after including the current measurement z_t

Time update: calculation of predicted state from current state and control input

$$\overline{bel}(x_t) = p(x_t|z_{1:t-1}, u_{1:t})$$

Prediction of x_t before including the current measurement z_t
Introductory example

Odometry input u_1: 1m forward.

Measurement z_2: here is a door.
A general algorithm for state estimation (inference): Bayes filter
Recursive Bayes filter algorithm

All entities are modelled as random variables with PDFs
Recursive Bayesian filtering

- Use probability distributions to model the estimation problem
 - Prediction/time update: calculate prior belief based on dynamic model
 - Correction/measurement update: calculate posterior belief based on measurement model

\[
bel(x_t) = \eta \, p(z_t | x_t) \int p(x_t | x_{t-1}, u_t) \, bel(x_{t-1}) \, dx_{t-1}
\]
Tracking pipeline

1. Image acquisition
2. Prediction
3. Measurement
4. Model matching
5. Correction
Recursive Bayes filter algorithm

1. \textbf{Bayes_filter}(bel(x_{t-1}), u_t, z_t):
2. \hspace{1em} for all \(x \) do
3. \hspace{2em} \overline{bel}(x_t) = \text{Time_update}(bel(x_{t-1}), u_t)
4. \hspace{2em} bel(x_t) = \text{Measurement_update}(\overline{bel}(x_t), z_t)
5. \hspace{1em} endfor
6. \hspace{1em} return \(bel(x_t) \)
Measurement update step derived

\[
\text{bel}(x_t) = \text{Measurement_update}(\overline{\text{bel}}(x_t), z_t)
\]

\[
\text{bel}(x_t) = p(x_t | z_{1:t}, u_{1:t})
\]

\[
= \frac{p(z_t | x_t, z_{1:t-1}, u_{1:t}) p(x_t | z_{1:t-1}, u_{1:t})}{p(z_t | z_{1:t-1}, u_{1:t})}
\]

\[
= \eta \ p(z_t | x_t) p(x_t | z_{1:t-1}, u_{1:t})
\]

\[
= \eta \ p(z_t | x_t) \overline{\text{bel}}(x_t)
\]

Bayes
Markov, normalizer
\(\overline{bel}(x_t) = \text{Time_update}(\, \overline{bel}(x_{t-1}), \, u_t \,) \)

\[
\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})
\]

\[
= \int p(x_t | x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} | z_{1:t-1}, u_{1:t}) dx_{t-1}
\]

\[
= \int p(x_t | x_{t-1}, u_t) p(x_{t-1} | z_{1:t-1}, u_{1:t-1}) dx_{t-1}
\]

\[
= \int p(x_t | x_{t-1}, u_t) \overline{bel}(x_{t-1}) dx_{t-1}
\]

For a finite state space, the integral turns into a sum.
Bayes update rule

\[
bel(x_t) = \eta p(z_t|x_t) \int p(x_t|x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1}
\]
Bayes filter algorithm

Prerequisites:

- **Assumption:** the world is Markov, i.e. the state is complete
- **Given:** 3 probability density functions:
 - Initial belief: \(p(x_0) \)
 - Measurement probability: \(p(z_t|x_t) \)
 - State transition probability: \(p(x_t|x_{t-1}, u_t) \)
Hands-on example of Bayesian inference

Prior belief

\[p(\text{staircase}) = 0.1 \]

Sensor model

\[
\begin{align*}
 p(\text{image} \mid \text{staircase}) &= 0.7 \\
 p(\text{image} \mid \text{no staircase}) &= 0.2
\end{align*}
\]

Bayesian inference (measurement update)

\[
\begin{align*}
p(\text{staircase} \mid \text{image}) &= \\
 &= \frac{p(\text{image} \mid \text{staircase}) \cdot p(\text{staircase})}{p(\text{image} \mid \text{staircase}) \cdot p(\text{staircase}) + p(\text{image} \mid \text{no staircase}) \cdot p(\text{no staircase})} \\
 &= \frac{0.7 \cdot 0.1}{0.7 \cdot 0.1 + 0.2 \cdot 0.9} = 0.28
\end{align*}
\]

1. for all \(x \) do
2. \[
 \text{bel}(x_t) = \eta p(z_t | x_t) \overline{\text{bel}}(x_t)
\]
3. endfor
Tip: how to calculate the normalization

\[P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \eta \ P(y \mid x) P(x) \]
\[\eta = P(y)^{-1} = \frac{1}{\sum x P(y \mid x) P(x)} \]

Algorithm:

\[\forall x: \text{aux}_{x \mid y} = P(y \mid x) P(x) \]
\[\eta = \frac{1}{\sum x \text{aux}_{x \mid y}} \]
\[\forall x: P(x \mid y) = \eta \ \text{aux}_{x \mid y} \]

The resulting distribution must integrate to 1
Summary: Bayes filter framework

Given:
- Stream of measurements $z_{1:t}$ and control data $u_{1:t}$
- Measurement model $p(z_t|x_t)$
- Dynamic model $p(x_t|x_{t-1}, u_t)$
- Prior/Initial probability of the system state $p(x_0)$

Wanted:
- Estimate of the state x_t of a dynamical system
- The posterior of the state is also called belief: $\text{bel}(x_t) = p(x_t|u_{1:t}, z_{1:t})$
Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors
Reality

Sources of error and uncertainty

- Environment dynamics
- Random effects
- Approximate computation
- Inaccurate models
- Sensor limitations
Summary: Bayes filters

• Probabilistic tool for **recursively** estimating the **state** of a **dynamical system** from **noisy measurements** and **control inputs**.

• Based on probabilistic concepts such as the **Bayes theorem**, **marginalization**, and **conditional independence**.

• Make a **Markov assumption** according to which the state is a complete summary of the past. In real-world problems, this assumption is usually an approximation!

• Can in the presented form only be implemented for simple estimation problems, requires either...or...
 – closed form solutions for multiplication and integral
 – restriction to finite state spaces
Outlook

• What is missing:
 – Concrete representations for belief
 – Concrete representations for probability density functions
 – Implementable and tractable filter approximations
 – Applicability to complex and continuous estimation problems
 – Hands-on experience

• Readings:
 – Kalman Filtering book by Peter Maybeck, chapter 1:

• Next lectures:
 – Filters: (Extended) Kalman filter
 – Measurement and motion models
Exercise 1

• Available at: http://av.dfki.de/images/stories/lectures/optss12/exercise1.pdf
 – Simple computations (probabilistic concepts, Bayes filter)
 – Handling of Gaussians (preparation for next lecture)
• If you want feedback, hand in solutions until June 12
• Tutorial session: Thursday, 14.06.2012, 14:00-15:30, DFKI, room 2.04 (second floor)
 – Discussion of solutions
 – Preparation for next lecture (Bayes filter with Gaussians)

• Any questions?