2D Image Processing

Bayes filter implementation: Kalman filter

Prof. Didier Stricker
Dr. Gabriele Bleser
Kaiserlautern University

http://ags.cs.uni-kl.de/

DFKI – Deutsches Forschungszentrum für Künstliche Intelligenz

http://av.dfki.de

Some slides based on G. Panin and K. Smith
EXAM: Oral exam from **28th August to 1 September 2017**

Please register and get an appointment, i.e. send a mail to: **keonna.cunningham@dfki.de**
Sensor Fusion: Inertial Sensors + Vision
Outline

- Recap: Bayes filter
- Some facts about Gaussians
- Kalman filter algorithm

Some slides are based on G. Panin, S. Thrun, and K. Smith
Summary: Bayes filter framework

- **Given:**
 - Stream of measurements $z_{1:t}$ and control data $u_{1:t}$
 - **Measurement model** $p(z_t|x_t)$
 - **Motion/Dynamic model** $p(x_t|x_{t-1}, u_t)$
 - **Prior/Initial probability of the system state** $p(x_0)$

- **Wanted:**
 - **Estimate of the state** x_t of a dynamical system
 - The posterior of the state is also called **belief**: $\text{bel}(x_t) = p(x_t|u_{1:t}, z_{1:t})$
Summary: Bayes filters

- Probabilistic tool for recursively estimating the state of a dynamical system from noisy measurements and control inputs.

- Based on probabilistic concepts such as the Bayes theorem, Theorem of Total Probability (marginalization), and conditional independence.

- Make a Markov assumption according to which the state is a complete summary of the past. In real-world problems, this assumption is usually an approximation!
Markov assumption

\[
p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t | x_{t-1}, u_t) \\
p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)
\]

Underlying Assumptions
- **Static world** (future is independent from past, given current state)
- **Independent noise**
- **Perfect model, no approximation errors**
Markov assumption revisited

Reality: sources of error and uncertainty

- Environment dynamics
- Approximate computation
- Inaccurate models
- Sensor limitations
- Random effects
Bayes update rule

\[bel(x_t) = \eta p(z_t | x_t) \int p(x_t | x_{t-1}, u_t) \, bel(x_{t-1}) \, dx_{t-1} \]

- Provides a general concept
- Can in the presented form only be implemented for simple estimation problems, requires either…or…
 - closed form solutions for multiplication and integral
 - restriction to finite state spaces
- What is missing to be able to use this:
 - Concrete representations for probability density functions
 - Implementable and tractable filter approximations
 - Applicability to continuous estimation problems
Representations of PDFs

- Example: Model the probability distribution of faces appearing in frame t
Representations of PDFs

- Example: Model the probability distribution of faces appearing in frame \(t \)

\[p(x) \]
Representations of PDFs

- Example: Model the probability distribution of faces appearing in frame t
Representations of PDFs

- Dirac

\[p(x) = \begin{cases}
1 & \text{if } x = \mu \\
0 & \text{otherwise}
\end{cases} \]

One hypothesis, no uncertainty
MAP=Maximum a posteriori: we look only for the maximum
Representations of PDFs

- Gaussian

\[p(x) = \eta \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

One hypothesis + uncertainty
Representations of PDFs

- Mixture of Gaussians

\[p(x) = \eta \sum_{m=1}^{M} w_m \exp \left\{ -\frac{1}{2} (x - \mu_m)^T \Sigma^{-1}_m (x - \mu_m) \right\} \]

Fixed number, \(M \), of modes + uncertainties
Representations of PDFs (non-parametric)

- Set of discrete samples (particles) \(\{x_t^{(n)}, n = 1, \ldots, N\} \)

\[
p(x) \approx \eta \sum_{n=1}^{N} \delta(x_t - x_t^{(n)})
\]

Any number and shape of modes
Representations of PDFs (non-parametric)

- Set of weighted particles

\[p(x) \approx \sum_{n=1}^{N} w_t^{(n)} \delta(x_t - x_t^{(n)}) \]

\[\{x_t^{(n)}, w_t^{(n)}\}_{n=1}^{N} \]

\[w_t^{(n)} \in [0,1] \]

\[\sum_{n} w_t^{(n)} = 1 \]

Any number and shape of modes
Filter methods (rules-of-thumb)

- Different characteristics in terms of:
 - Computational efficiency
 - Accuracy of the approximation
 - Ease of implementation

- Bayes Filter
 - Linear Gaussian models

- Kalman Filter
 - Nonlinear models, Gaussian noises

- Unscented Kalman Filter

- Extended Kalman Filter

- Kalman Filter banks
 - (Non)linear models, Gaussian noises, multi-modal

- Particle Filter
 - Highly nonlinear models, non-Gaussian noises, multi-modal
Kalman filter

- **Published in 1960**

- **Used for many problems**
 - Guidance
 - Navigation
 - Autopilots
 - Radar
 - Satellite
 - Weather forecasting
Univariate Gaussian

\[p(x) = (2\pi\sigma^2)^{\frac{1}{2}} \exp\left\{ -\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right\} := N(X; \mu, \sigma^2) \]

Exponentiation of a quadratic function
Multivariate Gaussian

- Normal distribution over a vector \(\rightarrow\) generalization of univariate normal distribution to higher dimensions

\[
p(x) = \frac{1}{\det(2\pi \Sigma)^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right\}
\]

\[
:= N(X; \mu, \Sigma)
\]

Mean vector \((n \times 1)\)
Covariance matrix \((n \times n)\)
(positive semi-definite, symmetric matrix)

\[
\mu = E[X] = \int x \, p(x) \, dx
\]

\[
\text{Cov}(X) = E\left((X - E(X))(X - E(X))^T \right) = E(XX^T) - E(X)E(X)^T
\]

\[
= \text{Cov}(X, X)
\]
Matlab example: Multivariate Gaussian
Matlab example: Samples drawn from a multivariate Gaussian
Properties of Gaussians

- Affine functions of Gaussians (linear in random variable) are again Gaussians with the following properties:

 Univariate case: μ, X, Y, σ, a, b are scalars
 \[
 \begin{align*}
 X &\sim N(\mu, \sigma^2) \\
 Y &= aX + b
 \end{align*}
 \[
 \Rightarrow
 Y \sim N(a\mu + b, a^2\sigma^2)

 Multivariate case: μ, X, Y, B are vectors, Σ, A are matrices
 \[
 \begin{align*}
 X &\sim N(\mu, \Sigma) \\
 Y &= AX + B
 \end{align*}
 \[
 \Rightarrow
 Y \sim N(A\mu + B, A\Sigma A^T)
 \]
Properties of Gaussians

- Let $X \sim N(0, I)$ be standard normally distributed
- Let $Y = AX + b$, with $A \in \mathbb{R}^{n \times n}$ invertible and $b \in \mathbb{R}^n$

\[
p(Y = y) = \frac{p(X = A^{-1}(y - b))}{\det(A)}
\]

$N(b, AA^T)(y) = N(0, I)(A^{-1}(y - b))/\det(A)$

- E.g. when halving a univariate Gaussian random variable, it is not only “compressed” by the factor 2, but also higher, since the values are more dense

Note: $\det A = \sqrt{\det AA^T}$
Matlab example: Two Gaussians with different variance (and mean)
Handling Gaussians

- How to generate samples $Y \sim N(\mu, C)$ with mean μ and covariance C from $X \sim N(0, I)$ (standard normal distribution)?

 - **Univariate case:**
 $$Y = \sqrt{C}X + \mu$$

 - **Multivariate case:** $C \in \mathbb{R}^{n \times n}$ with Cholesky decomposition $C = LL^T$ and $\mu \in \mathbb{R}^n$
 $$Y = LX + \mu$$
Matlab example: General Gaussian vs. transformed normal distribution
Drawing confidence regions of Gaussians (ex. 2D).

\[X \sim N(\mu, \Sigma), n\text{-dimensional (here } n = 2) \]
\[p(x) \propto \eta \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

Shape: draw a scaled and shifted circle

Overall scale of the ellipse determines enclosed probability mass \(\rightarrow \) confidence region

Matlab:
\texttt{chi2inv(\text{conf, } n)} provides squared scale

Quadratic function, induces an ellipse

Basically standardization \(\rightarrow \chi_n^2 \) distributed
Matlab example: Confidence region
Tracking with Kalman filters: Gaussians!

\[
\overline{\text{bel}}(x_t) = \int p(x_t|x_{t-1},u_t) \text{bel}(x_{t-1}) \, dx_{t-1}
\]

\[
\text{bel}(x_t) = \eta \, p(z_t|x_t) \overline{\text{bel}}(x_t)
\]

All PDFs are assumed Gaussian

→ closed-form solutions for integral and product of Gaussians
→ tractable Bayes filter implementation for continuous spaces
→ optimal (minimum variance) estimator for linear Gaussian systems
Product of Gaussians (fusion formula)

- Is again a Gaussian (though no longer normalized)
- **Univariate case:**
 \[X_1 \sim N(\mu_1, \sigma_1^2) \quad X_2 \sim N(\mu_2, \sigma_2^2) \quad \Rightarrow \quad p(X_1) \cdot p(X_2) \sim N \left(\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} \mu_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \mu_2, \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \right) \]

- **Multivariate case:**
 \[X_1 \sim N(\mu_1, \Sigma_1) \quad X_2 \sim N(\mu_2, \Sigma_2) \quad \Rightarrow \quad p(X_1) \cdot p(X_2) \sim N(\mu_1 + K(\mu_2 - \mu_1), \Sigma_1 - K\Sigma K^T) \quad K = \Sigma_1 \left(\Sigma_1 + \Sigma_2 \right)^{-1} \]

Recursive formulation

\[N \left(\mu_1 + k(\mu_2 - \mu_1)\sigma_1^2 - k\sigma_1^2 \right) \quad k = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \]
Fusion formula derived

\[e^a e^b = e^{a+b} \]

\[X_1 \sim N(\mu_1, \sigma_1^2) \quad X_2 \sim N(\mu_2, \sigma_2^2) \]
\[\Rightarrow p(X_1) \cdot p(X_2) = \eta \cdot \exp \left\{ -\frac{1}{2} \frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{1}{2} \frac{(x - \mu_2)^2}{\sigma_2^2} \right\} \]

\[\frac{\partial}{\partial x} \left\{ -\frac{1}{2} \frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{1}{2} \frac{(x - \mu_2)^2}{\sigma_2^2} \right\} = \frac{x - \mu_1}{\sigma_1^2} + \frac{x - \mu_2}{\sigma_2^2} = 0 \quad \text{(for new } \mu := x) \]

Maximum of quadratic function \(\Rightarrow \) set 1\(^{\text{st}}\) derivative to 0 \(\Rightarrow \)
Mean of resulting distribution

\[(\mu - \mu_1)\sigma_2^2 + (\mu - \mu_2)\sigma_1^2 = 0 \]
\[\mu (\sigma_1^2 + \sigma_2^2) = \mu_1 \sigma_2^2 + \mu_2 \sigma_1^2 \]
\[\mu = \frac{\mu_1 \sigma_2^2 + \mu_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2} \]

\[\frac{\partial^2}{\partial x^2} \left\{ -\frac{1}{2} \frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{1}{2} \frac{(x - \mu_2)^2}{\sigma_2^2} \right\} = \sigma_1^{-2} + \sigma_2^{-2} \]

Curvature of quadratic function \(\Rightarrow \) 2\(^{\text{nd}}\) derivative \(\Rightarrow \) Inverse of covariance

\[\sigma = \frac{1}{\sigma_1^{-2} + \sigma_2^{-2}} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \]
Kalman filter models (state-space model)

- **Motion model:**
 - Linear stochastic difference equation in x
 - Evolution of x_t based on previous state x_{t-1} and control input u_t

\[
x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t \iff p(x_t \mid x_{t-1}, u_t) = N(x_t; A_t x_{t-1} + B_t u_t, R_t)
\]

\[
\varepsilon_t \sim N(0, R_t)
\]

- **Measurement model:**
 - Linear stochastic equation in x
 - Describes, how measurements z_t are related to the state

\[
z_t = C_t x_t + \delta_t \iff p(z_t \mid x_t) = N(z_t; C_t x_t, Q_t)
\]

\[
\delta_t \sim N(0, Q_t)
\]
Components of a Kalman Filter

A_t Matrix $(n \times n)$ that describes how the state evolves from $t - 1$ to t without control input or noise.

B_t Matrix $n \times l$ that describes how the control input u_t changes the state from $t - 1$ to t.

C_t Matrix $(k \times n)$ that describes how to map the state x_t to an observation z_t.

ε_t Random variables representing the process and measurement noise that are assumed to be independent and normally distributed with covariance R_t and Q_t respectively.
Kalman filter update: prediction/time update

Initial belief

\[\text{bel}(x_{t-1}) = N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1}) \]

Prediction

\[\overline{\text{bel}}(x_t) = \int N(x_t; A_t x_{t-1} + B_t u_t, R_t) \text{bel}(x_{t-1}) \, dx_{t-1} \]

Gaussian

1D-case

\[\overline{\text{bel}}(x_t) = \begin{cases} \bar{\mu}_t = a_t \mu_{t-1} + b_t u_t \\ \bar{\sigma}_t^2 = a_t^2 \sigma_t^2 + \sigma_{\epsilon,t}^2 \end{cases} \]

Process noise covariance

\[\begin{cases} \bar{\mu}_t = A_t \mu_{t-1} + B_t u_t \\ \bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t \end{cases} \]
Kalman filter update: correction/measurement update

Initial belief \(\text{Prediction} \) Measurement

\[\text{bel}(x_{t}) \propto N(z_{t}; C_{t}x_{t}, Q_{t})\overline{\text{bel}}(x_{t-1}) \]

Gaussian fusion formula including linear functions!

1D-case

\[
\text{bel}(x_{i}) = \begin{cases}
\mu_{i} = \overline{\mu}_{i} + k_{i}(z_{i} - c_{i}\overline{\mu}_{i}) \\
\sigma_{i}^{2} = (1 - k_{i}c_{i})\overline{\sigma}_{i}^{2}
\end{cases},
\text{with } k_{i} = \frac{\overline{\sigma}_{i}^{2}c_{i}}{\overline{\sigma}_{i}^{2}c_{i}^{2} + \overline{\sigma}_{\delta_{i}}^{2}}
\]

\[
\text{bel}(x_{i}) = \begin{cases}
\mu_{i} = \overline{\mu}_{i} + K_{i}(z_{i} - C_{i}\overline{\mu}_{i}) \\
\Sigma_{i} = (I - K_{i}C_{i})\overline{\Sigma}_{i}
\end{cases},
\text{with } K_{i} = \overline{\Sigma}_{i}C_{i}^{T}(C_{i}\overline{\Sigma}_{i}C_{i}^{T} + Q_{i})^{-1}
\]

Uncertainty decreases

Measurement noise covariance
Measurement update derivation

\[
bel(x_t) = \eta \quad p(z_t \mid x_t) \quad \Rightarrow \quad bel(x_t) \\
\sim N(z_t; C_t x_t, Q_t) \quad \sim N(x_t; \mu_t, \Sigma_t) \\
\Rightarrow \\
bel(x_t) = \eta \exp \left\{ -\frac{1}{2} (z_t - C_t x_t)^T Q_t^{-1} (z_t - C_t x_t) \right\} \exp \left\{ -\frac{1}{2} (x_t - \mu_t)^T \Sigma_t^{-1} (x_t - \mu_t) \right\}
\]

- Find new \(\mu \) and \(\Sigma \) from 1\(^{st}\) and 2\(^{nd}\) derivative of quadratic function in exponent \(\Rightarrow \) cf. fusion formula

\[
bel(x_t) = \left\{ \begin{array}{l}
\mu_t = \mu_t + K_t (z_t - C_t \mu_t) \\
\Sigma_t = (I - K_t C_t) \Sigma_t
\end{array} \right.
\] with \(K_t = \Sigma_t C_t^T (C_t \Sigma_t C_t^T + Q_t)^{-1} \)

Whole derivation given, e.g., in Probabilistic Robotics by Thrun
Time update derivation

\[
\overline{\text{bel}}(x_t) = \int p(x_t | u_t, x_{t-1}) \, \text{bel}(x_{t-1}) \, dx_{t-1}
\]

\[
\downarrow \\
\sim N(x_t; A_t x_{t-1} + B_t u_t, R_t) \sim N(x_{t-1}; \mu_{t-1}, \Sigma_{t-1})
\]

\[
\downarrow \\
\overline{\text{bel}}(x_t) = \eta \int \exp \left\{ -\frac{1}{2} (x_t - A_t x_{t-1} - B_t u_t)^T R_t^{-1} (x_t - A_t x_{t-1} - B_t u_t) \right\}
\]

\[
\exp \left\{ -\frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1}) \right\} \, dx_{t-1}
\]

\[
\overline{\text{bel}}(x_t) = \left\{ \begin{array}{l}
\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t \\
\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t
\end{array} \right.
\]

Move the part of the exponent that is independent of \(x_{t-1}\) out of the integral and subsume integral in normalizer. Find new \(\mu\) and \(\Sigma\) from 1st and 2nd derivative of quadratic function in exponent (as before).

Whole derivation given, e.g., in Probabilistic Robotics by Thrun
Kalman filter algorithm (same structure as Bayes filter)

1. Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2. Prediction/time update:
 3. $\bar{\mu}_t = A_t \mu_{t-1} + B_t u_t$
 4. $\bar{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$

5. Correction/measurement update:
 6. $K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1}$
 7. $\hat{\mu}_t = \bar{\mu}_t + K_t (z_t - C_t \bar{\mu}_t)$
 8. $\Sigma_t = (I - K_t C_t) \bar{\Sigma}_t$
 9. return μ_t, Σ_t
Correction/Measurement update

\[\text{bel}(x_t) = \begin{cases} \mu_t = \bar{\mu}_t + K_t(z_t - C_t \bar{\mu}_t) \\ \Sigma_t = (I - K_t C_t) \bar{\Sigma}_t \end{cases} \]

with

\[K_t = \bar{\Sigma}_t C_t^T (C_t \bar{\Sigma}_t C_t^T + Q_t)^{-1} \]

Kalman gain:
how much the innovation is taken into account ➔ minimizes the posterior state covariance

Covariance decrease

Innovation

Innovation covariance
Kalman filter illustration (2D)

- Notation differs throughout literature

- In the following illustration by Kevin Smith:
 - Motion model without control input (often not given in visual tracking)
 - State covariance, measurement and process noise covariances are denoted by different symbols
 - Often used notation:
 - \(\hat{X}_{t|t-1}, P_{t|t-1} \)
 - \(\hat{X} \) indicates estimate (rather than true state)
 - \(P \) often used to denote state covariance
 - Estimate at time \(t \) given \(t-1 \) (before including the measurement)
Kalman filter example

- **State vector**

\[x_t = \begin{pmatrix} x \\ y \\ \dot{x} \\ \dot{y} \end{pmatrix} \]

- **Measurement**

\[z_t = \begin{pmatrix} x \\ y \end{pmatrix} \]

\[x_{0|0}, P_{0|0} \]
Kalman filter: initial conditions

- Initial state

\[
\begin{pmatrix}
 x_0 \\
 y_0 \\
 \dot{x}_0 \\
 \dot{y}_0
\end{pmatrix}
\]

\[
\begin{pmatrix}
 L \\
 L \\
 L \\
 L
\end{pmatrix}
\]

\[
x_{0|0}, P_{0|0}
\]
Kalman filter: predict mean (const. velocity model)

- Prediction from the motion model (here without control)
- Update the mean

\[\hat{\mathbf{x}}_{t|t-1} = \mathbf{F}_t \hat{\mathbf{x}}_{t-1|t-1} \]

- State transition matrix

\[\mathbf{F}_t = \begin{pmatrix} 1 & \Delta t \\ 1 & \Delta t \\ 1 & 1 \end{pmatrix} \]
Kalman filter: predict covariance

\[P_{1|0} = F_1 P_{0|0} F_1^T + Q_0 \]

- Prediction from the motion model (here without control)

- Update covariance

\[P_{t|t-1} = F_t P_{t-1|t-1} F_t^T + Q_{t-1} \]
Kalman filter: predict covariance

- If we would only predict

\[x_{0|0}, P_{0|0} \]

Predict: \[\hat{x}_{t|t-1}, P_{t|t-1} \]

Correct: \[x_{t|t}, P_{t|t} \]
Kalman filter: measurement

- Receive a noisy measurement (observation)
 \[z_1 = \begin{pmatrix} x \\ y \end{pmatrix} \]
- Measurement matrix
 \[H_t = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \]
Kalman filter: predicted measurement

- Predicted measurement

\[z_p = H_t x_t \]

\[
\begin{pmatrix}
 x_p \\
 y_p \\
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 \dot{x} \\
 \dot{y} \\
\end{pmatrix}
\]

\[z_p, R_p \]

\[z_t, R \]
Kalman filter: innovation

- Innovation (residual) and innovation covariance:

\[\tilde{y}_t = z_t - H_t \hat{x}_{t|t-1} \]

\[S_t = H_t P_{t|t-1} H_t^T + R_t \]

\[x_{0|0}, P_{0|0} \]

\[\hat{x}_{t|t-1}, P_{t|t-1} \]

\[z_t, R \]

\[\tilde{y}_t, S_t \]

predict

\[\begin{align*}
\tilde{y}_t &= z_t - H_t \hat{x}_{t|t-1} \\
S_t &= H_t P_{t|t-1} H_t^T + R_t
\end{align*} \]

correct
Kalman gain specifies how much the correction considers the prediction or the measurement.

\[
K_t = P_{t|t-1}H_t^T S_t^{-1}
\]
Kalman filter: measurement update

- Correct the prediction using the measurement

\[
\hat{x}_{t|t} = \hat{x}_{t|t-1} + K_t \tilde{y}_k
\]

\[
P_{t|t} = (I - K_t H_t) P_{t|t-1}
\]

Includes innovation covariance

Predicted covariance

State prediction

Innovation

\(x_{0|0}, P_{0|0}\)

\(\hat{x}_{t|t-1}, P_{t|t-1}\)

Predict

Correct
- Predict, measure, correct cycle iteratively estimates the state at each time step

\[x_{0|0}, P_{0|0}, \hat{x}_{t|t-1}, P_{t|t-1}, z_t, R, \tilde{y}_t, S_t \]
Summary: Kalman filter

- **Pros 😊**
 - Efficient
 - Gaussian densities are easy to work with
 - Optimal solution for linear Gaussian systems (minimal variance)
 - Well established method

- **Cons 😞**
 - Restricted to Gaussian densities
 - Uni-modal distribution: single hypothesis
 - Only linear, continuous models

- **Readings:**
General purpose (translational) motion models

- **Unconstrained models without control input** (holds for \(n = 1 \ldots 3D \) case)

- **Notation:** \(x, p, v, a, j, \varepsilon \to n \)-vectors and \(I, 0, T := \Delta t^2 \frac{2}{2} I, T^3 := \Delta t^3 \frac{3}{3} I \to n \times n \) diagonal matrices

<table>
<thead>
<tr>
<th>State</th>
<th>Motion model</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = p)</td>
<td>(x_{t+\Delta t} = x_t + T \ell_t)</td>
<td>(also Brownian motion)</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\ell_{t+\Delta t} = (T^2 \ell_t^T \ell_t) \ell_t)</td>
<td>Const. position, white noise velocity (\ell_t = v_t)</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\ell_{t+\Delta t} = \left(\begin{array}{c} 0 \ 1 \ 0 \ 0 \end{array} \right) \ell_t + \left(\begin{array}{c} T^3 \ T^2 \ T^3 \ T^3 \end{array} \right) \ell_t)</td>
<td>Const. acceleration, white noise jerk (\ell_t = j_t)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Motion model</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = p)</td>
<td>(x_{t+\Delta t} = x_t + T \ell_t)</td>
<td>(also Brownian motion)</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\ell_{t+\Delta t} = \left(\begin{array}{c} 0 \ 1 \ 0 \ 0 \end{array} \right) \ell_t + \left(\begin{array}{c} T^3 \ T^2 \ T^3 \ T^3 \end{array} \right) \ell_t)</td>
<td>Const. position, white noise velocity (\ell_t = v_t)</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\ell_{t+\Delta t} = \left(\begin{array}{c} 0 \ 1 \ 0 \ 0 \end{array} \right) \ell_t + \left(\begin{array}{c} T^3 \ T^2 \ T^3 \ T^3 \end{array} \right) \ell_t)</td>
<td>Const. acceleration, white noise jerk (\ell_t = j_t)</td>
</tr>
</tbody>
</table>
General purpose (translational) motion models

<table>
<thead>
<tr>
<th>State</th>
<th>Motion model</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{F}</td>
<td>$x_{t+\Delta t} = x_t + T(u_t + \epsilon_t)$</td>
<td>Const. velocity, velocity as noisy input $v_t = u_t + \epsilon_t$</td>
</tr>
<tr>
<td>\mathbb{F}</td>
<td>$x_{t+\Delta t} = \left(\begin{array}{c} \dot{x}_t \ v_t \end{array}\right) + \left(\begin{array}{c} T^2 \ T \end{array}\right) \left(\begin{array}{c} u_t + \epsilon_t \ \epsilon_t \end{array}\right)$</td>
<td>Const. acceleration, acceleration as noisy input $a_t = u_t + \epsilon_t$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Motion model</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{F}</td>
<td>$x_{t+\Delta t} = x_t + T(u_t + \epsilon_t)$</td>
<td>Const. velocity, velocity as noisy input $v_t = u_t + \epsilon_t$</td>
</tr>
<tr>
<td>\mathbb{F}</td>
<td>$x_{t+\Delta t} = \left(\begin{array}{c} \dot{x}_t \ v_t \end{array}\right) + \left(\begin{array}{c} T^2 \ T \end{array}\right) \left(\begin{array}{c} u_t + \epsilon_t \ \epsilon_t \end{array}\right)$</td>
<td>Const. acceleration, acceleration as noisy input $a_t = u_t + \epsilon_t$</td>
</tr>
</tbody>
</table>

- ☺ **Smaller state, more efficient**
- ☹ **Control input enters estimate immediately, not filtered**
General purpose (translational) motion models

Ballistic trajectory (gravity modelled as noisy control input)

- The model does not have to be physically motivated
- Basically, we are free to model whatever we want

Constrained Brownian motion (in 1D)
Thank you!